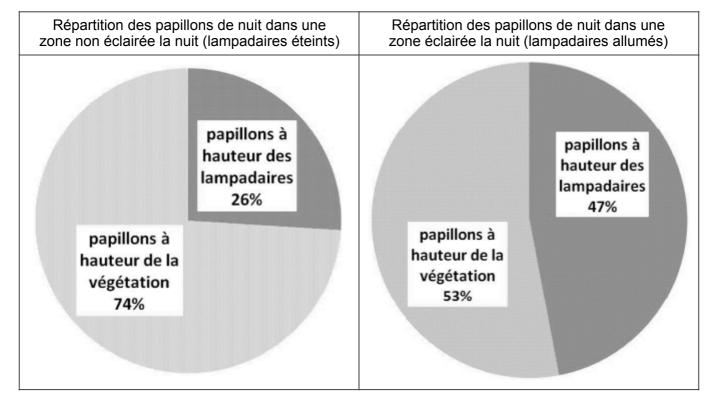
Bac S - Sujet de SVT - Session 2018 - Métropole

1ère PARTIE : (8 points)

LE DOMAINE CONTINENTAL ET SA DYNAMIQUE

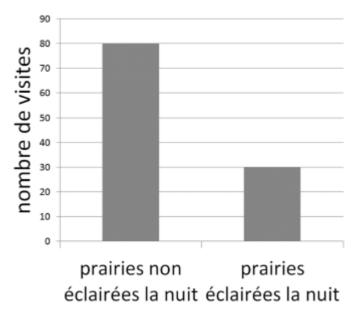
Expliquer la formation des reliefs associés aux chaînes de montagnes de collision ainsi que les mécanismes contribuant à leur disparition.

La réponse prendra la forme d'un texte structuré et illustré.

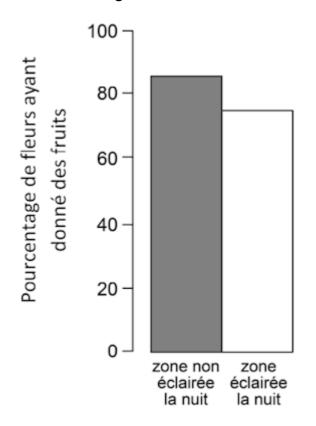

2ème PARTIE - Exercice 1 (3 points)

GÉNÉTIQUE ET ÉVOLUTION

À partir de l'étude des documents, proposer une explication possible à l'impact de l'éclairage nocturne sur la reproduction des plantes à fleurs.


Document 1 : Répartition des papillons de nuit en fonction de l'éclairage artificiel.

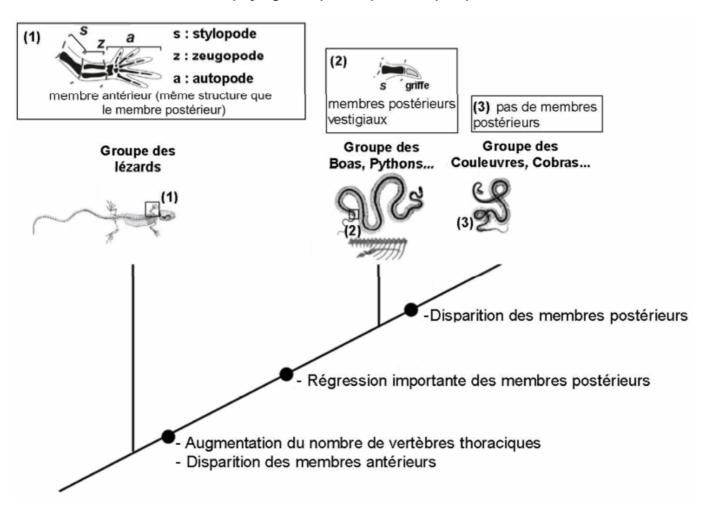
Les papillons de nuit sont des pollinisateurs nocturnes.


Document 2 : Nombre de visites des fleurs de prairies par des insectes pollinisateurs nocturnes

Les visites ont été dénombrées dans sept prairies laissées à l'obscurité la nuit et dans sept prairies éclairées la nuit par des projecteurs.

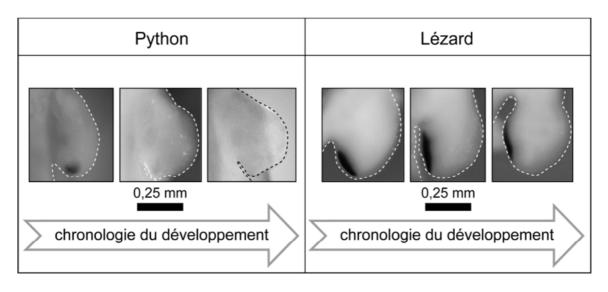
D'après Knop et al., Nature, 2017.

<u>Document 3</u>: Pourcentage de fleurs de cirse maraîcher (*Cirsium oleraceum*) ayant produit des fruits en présence ou en absence d'éclairage nocturne.



D'après Knop et al., Nature, 2017.

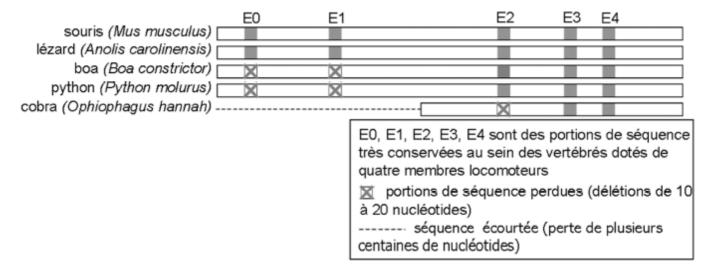
GÉNÉTIQUE ET ÉVOLUTION


À l'aide de l'étude des documents et des connaissances, expliquer l'origine de la réduction ou de la perte des membres chez les serpents.

Document de référence : Arbre phylogénétique simplifié de quelques vertébrés

<u>Document 1</u>: Expression du gène de développement Sonic HedgeHog – Shh – dans les ébauches de membres postérieurs à différents stades du développement embryonnaire d'un python et d'un lézard.

Le gène *Shh* est un gène du développement participant à la formation des membres antérieurs et postérieurs des vertébrés.


Les pointillés délimitent l'ébauche du membre postérieur de l'embryon. Les tâches noires correspondent aux zones d'expression du gène *Shh*.

Leal et Cohn, 2016, Current Biology 26

Document 2 : Rôle de ZRS, séquence d'ADN régulatrice du gène Shh

Manipulations génétiques	Expression du gène Shh par localisation de l'ARNm de Shh (zones sombres) dans les bourgeons de membres antérieurs d'embryons de souris âgés de 10,5 jours
Témoin : séquence ZRS de souris non modifiée (mZRS)	0, <u>1 m</u> m
Suppression de la séquence ZRS de souris (mZRS)	0, <u>1 mm</u>
Insertion de la séquence ZRS de python (pZRS) en remplacement de la séquence ZRS de souris (mZRS)	0, <u>1 mm</u>
	★ faible quantité d'ARNm de <i>Shh</i> mesurée

Document 3 : Représentation schématique de la séquence ZRS de différents vertébrés

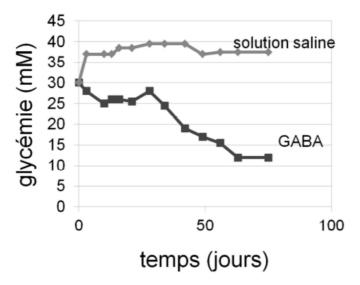
Kvon et al., 2016, Cell 167

Document 4 : Réactivation de la séquence ZRS de souris « serpentisées » par génie génétique

La séquence pZRS(r) est obtenue par génie génétique en insérant la portion E1 de la séquence ZRS de souris dans la séquence ZRS du python.

Séquences ZRS insérées en remplacement de la séquence ZRS de souris		Phénotype des souris
E0 E1 E2 E3 E4	_	« souris serpentisée » : membres antérieurs et postérieurs atrophiés
pZRS(r) E0 E1de souris E2 E3 E4	+	Membres antérieurs et postérieurs normalement développés

Kvon et al., 2016, Cell 167

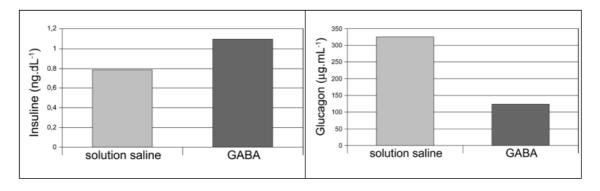

2ème PARTIE – Exercice 2 (Enseignement de spécialité). 5 points.

À partir de l'étude des documents et des connaissances, justifier que le GABA constitue un espoir de traitement pour les diabétiques de type 1 et expliquer son mode d'action.

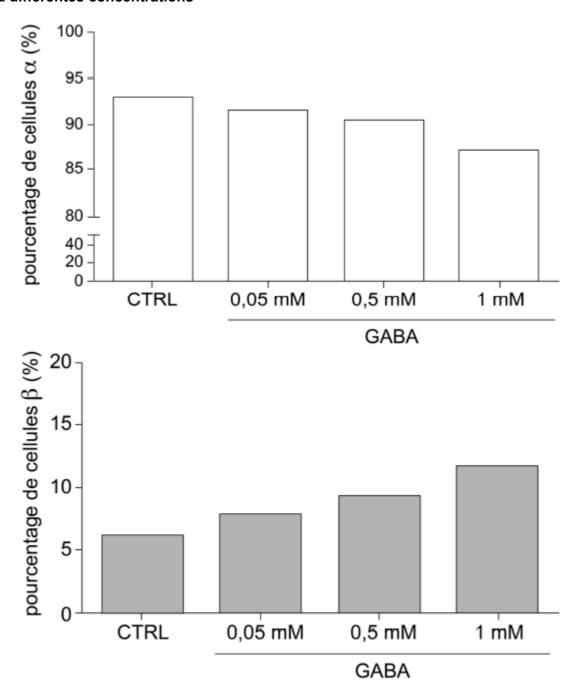
<u>Document 1</u>: Conséquences de l'injection quotidienne de GABA sur des souris diabétiques.

<u>1a</u>: Concentration en glucose mesurée dans le sang de souris diabétiques ayant reçu des injections quotidiennes de GABA ou de solution saline (témoin).

Soltani et al. 2011 PNAS


 $\underline{1b}$: Coupes de pancréas de souris observées au microscope après marquage des cellules β des îlots de Langerhans (en noir) et identification de lymphocytes infiltrant le tissu (flèches noires).

- A Pancréas d'une souris non diabétique.
- B Pancréas d'une souris diabétique.
- C Pancréas d'une souris diabétique ayant reçu des injections quotidiennes de GABA.


Soltani et al. 2011 PNAS

<u>1c</u> : Concentrations d'insuline et de glucagon mesurées dans le sang de souris diabétiques ayant reçu des injections quotidiennes de solution saline ou de GABA

Soltani et al. 2011 PNAS

<u>Document 2</u>: Pourcentage des cellules productrices de glucagon (cellules α) ou d'insuline (cellules β) dans les îlots de Langerhans de souris ayant reçu, ou non (CTRL), des injections de GABA à différentes concentrations

D'après Ben-Othman et al., 2017, Cell 168

<u>Document 3</u>: Effet du GABA sur la proportion de cellules productrices d'insuline et de glucagon dans les îlots de Langerhans

Traitement reçu par les souris	Schématisation simplifiée d'un îlot de Langerhans avec marquage des cellules produisant de l'insuline (**)	Schématisation simplifiée d'un îlot de Langerhans avec marquage : - des cellules produisant de l'insuline (**) - des cellules produisant du glucagon (**) - des cellules ayant produit du glucagon mais n'en produisant plus ((\(\tilde{\Delta} \))
Solution saline (témoin)		
GABA		

Schéma simplifié d'après Ben-Othman et al., 2017, Cell 168